

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: DATA SCIENCE (19CS0542)

Course & Branch: B.Tech - CSE

Year &Sem: IV-B.Tech & I-Sem

Regulation: R19

UNIT –I INTRODUCTION TO R & DATA ANALYSIS

1	a	What is exploratory data analysis ?List the five main skills and	[L1][CO1]	[6M]			
		behavioral characteristics of Data scientists.					
	b	Define the window panes of RStudio GUI .Give the difference between	[L4][CO1]	[6M]			
		BI and Data science					
2	a	Sketch Date Analytics Lifecycle diagram.	[L3][CO1]	[4M]			
	b	Explain in detail each stages of Data Analytics Lifecycle	[L2][CO1]	[8M]			
3		Illustrate in detail the data types of R.	[L3][CO1]	[12M]			
4	a	Expand and Distinguish between NOIR attributes	[L4][CO1]	[6M]			
	b	Describe the Array function in R	[L2][CO1]	[6M]			
5		Examine the functions used for Visualizing a Single Variable	[L3][CO5]	[12M]			
6		Discriminate about the functions used for examining Multiple Variables	[L5][CO1]	[12M]			
7		Give example and define the following function of R	[L2][CO1]	[12M]			
		a) read()					
		b) head()					
		c) summary()					
		d) plot()					
		e) summary()					
8	a	Discuss the Data frames utilization in R	[L2][CO1]	[6M]			
	b	Describe the List function in R	[L2][CO1]	[6M]			
9	a	Define dirty data	[L1][CO5]	[4M]			
	b	How dirty data can be detected in the data exploration phase with	[L2][CO5]	[8M]			
		Visualizations					
10	a	Illustrate the importance of visualizing data before analysis	[L2][CO5]	[6M]			
	b	Justify "Using visualization for data exploration is different from	[L6][CO5]	[6M]			
		presenting results to stakeholders"					

UNIT –II STATISTICAL METHODS FOR EVALUATION & ASSOCIATION RULES

1	•	Cotogoniza the Uznethasis Testing	[I_1][CO2]	[∠]/[]
I	a	Categorize the Hypothesis Testing.		
	b	What is Power of test?Explain the Sample Size and effect size are	[L2][CO3]	[6M]
		related.		
2	a	Differentiate Null Hypotheses and Alternative Hypotheses	[L4][CO3]	[6M]
	b	Examine the application property of Wilcoxon rank-sum test	[L3][CO3]	[6M]
3		Discriminate about Difference of Means	[L5][CO2]	[12M]
4		Suppose everyone who visits a retail website gets one promotional offer	[L5][CO2]	[12M]
		or no promotion at all. We want to see if making a promotional offer		
		makes a difference. What statistical method would you recommend for		
		this analysis?		
5		Explain the following	[L2][CO2]	[12M]
		a) Student's t-test		
		b) Welch's t-test		
6	a	Define and Detail ANOVA.	[L1][CO3]	[6M]
	b	How evaluation of Candidate Rules are done?	[L2][CO3]	[6M]
7	a	What is a type I error? What is a type II error? Is one always more	[L1][CO3]	[6M]
		serious than the other? Why?		
	b	Give the difference between Validation and Testing	[L4][CO5]	[6M]
8	a	State Apriori Algorithm	[L1][CO3]	[4M]
	b	Explain Apriori Algorithm with example	[L2][CO3]	[8M]
9	a	List and Discuss the four measures of significance of Association rules	[L1][CO3]	[6M]
	b	Give the Applications of Association Rules	[L1][CO3]	[6M]
10		Illustrate any five approaches to improve Apriori's efficiency when the	[L3][CO3]	[12M]
		dataset is large.		_
				•

UNIT –III REGRESSION & CLASSIFICATION

1	a	Discuss confusion matrix with suitable example.					[L1][CO4]	[6M]	
	b	What is accuracy? Which two basic measures does the entropy				[L1][CO4]	[6M]		
		methods select the most informative attribute?							
2		Explain the analytical technique Linear Regression with its model					[L2][CO4]	[12M]	
		description.							
3		Discuss the foll	lowing with respe	ct to linear reg	gression		[L2][CO4]	[12M]	
		a) Categorical V	Variables						
		b) Confidence	Intervals on the Pa	arameters					
		c) Confidence	Interval on the Exp	pected Outcon	me				
		d) Prediction In	iterval on a Partici	ular Outcome				F 43 63	
4	a	Justify the usag	ge of linear regress	sion and logis	tic regression.		[L6][CO4]	[4M]	
	b	Illustrate Logis	tic Regression Mo	odel.			[L3][CO4]	[8M]	
5	a	Describe Decis	ion Trees in detail	with exampl	e.		[L2][CO4]	[6M]	
	b	Explain the alg	orithm of decision	n tree			[L3][CO4]	[6M]	
6		Intercept the de	cision trees algori	ithms			[L4][CO4]	[12M]	
7	a	State Bayes' Th	neorem				[L1][CO4]	[4M]	
	b	Discuss Naïve Bayes classification method considering an example					[L2][CO4]	[8M]	
8		How does one pick the most suitable method for a given classification					[L2][CO4]	[12M]	
		problem?							
9	a	Compare the C4.5 and CART algorithm of decision tree.					[L4][CO4]	[4M]	
	b	Discriminate the way how the evaluation of decision tree is done					[L5][CO4]	[4M]	
	с	Give the two approaches that help avoid over fitting in decision tree						[4M]	
		learning.							
10		Consider the given confusion Matrix of Naïve Bayes from the Bank					[L4][CO4]	[12M]	
		Marketing Dataset							
			Pred	icted Class	1				
				Subscribed	Not Subscribed	Total			
			Subscribed	3	8	11			
		Actual Class	Not Subscribed	2	87	89			
		Total		5	95	100			
		Calculate the following defining them							
		a) Accuracy							
		b) TPR							
		c) FPR							
		d) FNR							
		e) Precision							

UNIT –IV
CLUSTERING & TIME SERIES ANALYSIS

1	a	What is clustering? State the advantage of using PAM.	[L1][CO4]	[8M]
	b	List the various parts of ARIMA model	[L1][CO4]	[4M]
2		Illustrate the method to find k clusters from a collection of M objects	[L3][CO6]	[12M]
		with n attributes.		
3	a	Explain any one case study for time series analysis	[L2][CO5]	[6M]
	b	What is forecasting in association with time series. Explain	[L1][CO6]	[6M]
4	a	Indicate when the time series $y_t^{\text{for t=1,2,3,}}$ is said to be stationary time	[L2][CO6]	[4M]
		series.		
	b	Express the stationary time series conditions in detail.	[L6][CO6]	[8M]
5		Discuss in detail each part of the ARIMA model	[L2][CO4]	[12M]
6	a	List and explain time series components	[L1][CO6]	[6M]
	b	Discriminate the steps involved in Box-Jenkins Methodology	[L5][CO6]	[6M]
7	a	What is meant by k-means	[L1][CO4]	[4M]
	b	Describe k-means algorithm to find k clusters	[L2][CO4]	[8M]
8		Correlate ARMA and ARIMA Models	[L4][CO6]	[12M]
9		Express the following	[L2][CO6]	[12M]
		a) Autocorrelation Function		
		b) Autoregressive Models		
10		List and describe Additional time series methods	[L2][CO6]	[12M]

UNIT –V TEXT ANALYSIS

1	a	What is text analytics? Explain meant by word cloud?	[L1][CO6]	[6M]
	b	Define Confusion matrix. And Illustrate the Porter's stemming	[L3][CO6]	[6M]
		algorithm.		
2		Explain the three important steps of the text analysis	[L2][CO6]	[12M]
3	a	Sketch the flow diagram of Text analysis process	[L5][CO6]	[4M]
	b	Illustrate in detail the steps involved in the process of Text Analysis	[L3][CO6]	[8M]
		done by organizations		
4	a	Define TFIDF.	[L1][CO6]	[4M]
	b	Describe the usage of TFIDF to compute the usefulness of each word in	[L2][CO6]	[8M]
		the texts.		
5		Explain how the data science team will categorize the reviews by topics	[L2][CO6]	[12M]
6		Illustrate the main challenges of text analysis	[L3][CO6]	[12M]
7	a	Define Topic model. Describe LDA.	[L2][CO6]	[6M]
	b	Justify the process of topic modeling simplification.		[6M]
8		Explain the following		[12M]
		a) Tokenization		
		b) Case folding		
9	a	Explain how categorizing documents by topics is done.	[L2][CO6]	[6M]
	b	Interpret the procedure used in data science to gain insights into	[L3][CO6]	[6M]
		customer opinions		
10	a	What is meant by sentiment analysis	[L1][CO6]	[4M]
	b	Discriminate the methods used for sentiment analysis	[L5][CO6]	[8M]

Prepared by: Mr. G Ravi Kumar Assistant Professor